Главная » Рефераты    
рефераты Разделы рефераты
рефераты
рефератыГлавная
рефератыЕстествознание
рефератыУголовное право уголовный процесс
рефератыТрудовое право
рефератыЖурналистика
рефератыХимия
рефератыГеография
рефератыИностранные языки
рефератыРазное
рефератыИностранные языки
рефератыКибернетика
рефератыКоммуникации и связь
рефератыОккультизм и уфология
рефератыПолиграфия
рефератыРиторика
рефератыТеплотехника
рефератыТехнология
рефератыТовароведение
рефератыАрхитектура
рефератыАстрология
рефератыАстрономия
рефератыЭргономика
рефератыКультурология
рефератыЛитература языковедение
рефератыМаркетинг товароведение реклама
рефератыКраеведение и этнография
рефератыКулинария и продукты питания
рефераты
рефераты Информация рефераты
рефераты
рефераты

Водные ресурсы - (реферат)

Водные ресурсы - (реферат)

Дата добавления: март 2006г.

    Министерство Образования РФ
    Хабаровская гимназиЯ №3
    РЕФЕРАТ
    по химии
    “ВОДНЫЕ РЕСУРСЫ”
    Выполнила: ученица 11 класса “А”
    Руководитель:
    Оценка:
    Хабаровск
    2001 год
    План:
    Водная среда……………………………………………………………………………………………………3
    Водный баланс…………………………………………………………………………………………………5
    Гидросфера как природная система………………………………………………6
    Вода с точки зрения химии…………………………………………………………………7
    Общие свойства воды……………………………………………………………………………7
    Ионный состав воды………………………………………………………………………………9
    Подземные воды……………………………………………………………………………………………12
    Загрязнение……………………………………………………………………………………………………14
    Загрязнение поверхностных вод………………………………………………15
    Загрязнение подземных вод…………………………………………………………17
    Загрязнение на территории Хабаровского края………………19
    Заключение………………………………………………………………………………………………………21
    Список литературы……………………………………………………………………………………22
    Водная среда.

Водная среда включает поверхностные и подземные воды. Поверхностные воды в основном сосредоточены в океане, содержанием 1 млрд. 375 млн. км3- около 98% всей воды на Земле. Поверхность океана (акватория) составляет 361 млн. км2. Она примерно в 2, 4 раза больше площади суши территории, занимающей 149 млн. км2. Вода в океане соленая, причем большая ее часть (более 1 млрд. км3) сохраняет постоянную соленость около 3, 5% и температуру, примерно равную 3, 7°С. Заметные различия в солености и температуре наблюдаются почти исключительно в поверхностном слое воды, а также в окраинных и особенно в средиземных морях. Содержание растворенного кислорода в воде существенно уменьшается на глубине 50-60 метров.

Подземные воды бывают солеными, солоноватыми (меньшей солености) и пресными; существующие геотермальные воды имеют повышенную температуру (более 30°С. ). Для производственной деятельности человечества и его хозяйственно-бытовых нужд требуется пресная вода, количество которой составляет всего лишь 2, 7% общего объема воды на Земле, причем очень малая ее доля (всего 0, 36%) имеется в легкодоступных для добычи местах. Большая часть пресной воды содержится в снегах и пресноводных айсбергах, находящихся в районах в основном Южного полярного круга. Годовой мировой речной сток пресной воды составляет 37, 3 тыс. км3. томе того, может использоваться часть подземных вод, равная 13 тыс. км3. К сожалению, большая часть речного стока в России, составляющая около 5000 км3, приходится на малоплодородные и малозаселенные северные территории. При отсутствии пресной воды используют соленую поверхностную или подземную воду, производя ее опреснение или гиперфильтрацию: пропускают под большим перепадом давлений через полимерные мембраны с микроскопическими отверстиями, задерживающими молекулы соли. Оба эти процесса весьма энергоемки, поэтому представляет интерес предложение, состоящее в использовании в качестве источника пресной воды пресноводных айсбергов (или их части), которые с этой целью буксируют по воде к берегам, не имеющим пресной воды, где организуют их таяние. По предварительным расчетам разработчиков этого предложения, получение пресной воды будет примерно вдвое менее энергоемки по сравнению с опреснением и гиперфильтрацией. Важным обстоятельством, присущим водной среде, является то, что через нее в основном передаются инфекционные заболевания (примерно 80% всех заболеваний). Впрочем, некоторые из них, например, коклюш, ветрянка, туберкулез, передаются через воздушную среду. С целью борьбы с распространением заболеваний через водную среду Всемирная организация здравоохранения (ВОЗ) объявила текущее десятилетие десятилетием питьевой воды.

    Водный баланс земли.

Чтобы представить, сколько воды участвует в круговороте, охарактеризуем различные части гидросферы. Более 94% ее составляет Мировой океан. Другая часть (4%)–подземные воды. При этом следует учесть, что большая их часть относится к глубинным рассолам, а пресные воды составляют 1/15 долю. Значителен также объем льда полярных ледников: с пересчетом на воду он достигает 24 млн. км. , или 1, 6% объема гидросферы. Озерной воды в 100 раз меньше–230 тыс. км. , а в руслах рек содержится всего лишь 1200 м. Воды, или 0, 0001% всей гидросферы. Однако, несмотря на малый объем воды, реки играют очень большую роль: они, как и подземные воды, удовлетворяют значительную часть потребностей населения, промышленности и орошаемого земледелия. Воды на Земле довольно много. Гидросфера составляет около 1/4180 части массы нашей планеты. Однако на долю пресных вод, исключая воду, скованную в полярных ледниках, приходится немногим более 2 млн. км. , или только 0, 15% всего объема гидросферы.

    Гидросфера как природная система

Гидросфера –это прерывистая водная оболочка Земли, совокупность морей, океанов, континентальных вод (включая подземные) и ледяных покровов. Моря и океаны занимают около 71% земной поверхности, в них сосредоточено около 96, 5% всего объема гидросферы. Суммарная площадь всех внутренних водоемов суши составляет менее 3% ее площади. На долю ледников приходится 1, 6% запасов воды в гидросферы, а их площадь составляет около 10% площади континентов. Важнейшее свойство гидросферы –единство всех видов природных вод (Мирового океана, вод суши, водяного пара в атмосфере, подземных вод), которое осуществляется в процессе круговорота воды в природе. Движущими силами этого глобального процесса служат поступающая на поверхность Земли тепловая энергия Солнца и сила тяжести, обеспечивающие перемещение и возобновление природных вод всех видов.

Испарение с поверхности Мирового океана и с поверхности суши является начальным звеном круговорота воды в природе, обеспечивающим не только возобновление наиболее ценного его компонента–пресных воды суши, но и их высокое качество. Показателем активности водообмена природных вод служит высокая скорость их возобновления, хотя различные природные воды возобновляются (замещаются) с неодинаковой скоростью. Наиболее мобильный агент гидросферы– речные воды, период возобновления которых составляет 10-14 суток. Преобладающая часть гидросферных вод сосредоточена в Мировом океане. Мировой океан–основное замыкающее звено круговорота воды в природе. Он отдает большую часть испаряющейся влаги в атмосферу. Водные организмы, населяющие поверхностный слой Мирового океана, обеспечивают возврат в атмосферу значительной части свободного кислорода планеты.

Огромный объем Мирового океана свидетельствует о неисчерпаемости природных ресурсов планеты. Кроме того, Мировой океан является коллектором речных вод суши, ежегодно принимая около 39 тыс. м3 воды. Наметившееся в отдельных районах загрязнение Мирового океана грозит нарушить естественный процесс влагоооборота в его наиболее ответственном звене– испарении с поверхности океана.

    Вода с точки зрения химии.

Огромная роль воды в жизни человека и природы послужила причиной того, что она была одним из первых соединений, привлекших внимание ученых. Тем не менее, изучение воды еще далеко не закончено.

    Общие свойства воды.

Вода в силу популярности ее молекул способствует разложению контактирующих с ней молекул солей на ионы, но сама вода проявляет большую устойчивость и в химически чистой воде содержится очень мало ионов по H+ и OH-. Вода –инертный растворитель; химически не изменяется под действием большинства технических соединений, которые не растворяет. Это очень важно для всех живых организмов на нашей планете, поскольку необходимые тканям питательные вещества поступают в водных растворах в сравнительно мало измененном виде. В природных условиях вода всегда содержит то или иное количество примесей, взаимодействуя не только с твердыми и жидкими веществами, но растворяя также и газы. Даже из свежевыпавшей дождевой воды можно выделить несколько десятков миллиграммов различных растворенных в ней веществ на каждый литр объема. Абсолютно чистую воду никогда и никому еще не удавалось получить ни в одном из ее агрегатных состояний; химически чистую воду, в значительной мере лишенную растворенных веществ, производят путем длительной и кропотливой очистки в лабораториях или на специальных промышленных установках.

В природных условиях вода не может сохранить “химическую чистоту”. Постоянно соприкасаясь со всевозможными веществами, она фактически всегда представляет собой раствор различного, зачастую очень сложного свойства. В пресной воде содержание растворенных веществ обычно превышает 1 г/л. От нескольких единиц до десятков граммов на литр колеблются содержание солей в морской воде: например, в Балтийском море их всего 5 г/л, в Черном– 18, а в Красном море – даже 41 г/л. Солевой состав морской воды в основном на 89% слагается из хлоридов (преимущественно хлорида натрия, калия, кальция), 10% приходится на сульфаты (натрия, калия, магния) и 1% - на карбонаты (натрия, кальция) и другие соли. Пресные воды содержат обычно больше всего до 80% карбонатов (натрия, кальция), около 13% сульфатов (натрия, калия, магния) и 7% хлоридов (натрия и кальция). Вода хорошо растворяет газы (особенно при низких температурах), главным образом кислород, азот, диоксид углерода, сероводород. Количество кислорода иногда достигает 6 мг/л. В минеральных водах типа нарзан общее содержание газов может составлять до 0, 1%. В природной воде присутствуют гумусовые вещества–сложные органические соединения, образующиеся в результате неполного распада остатков растительных и животных тканей, а также соединения типа белков, сахаров, спиртов.

Вода обладает исключительно высокой теплоемкостью. Теплоемкость воды принята за единицу. Теплоемкость песка, например, составляет 0, 2, а железа–лишь 0, 107 теплоемкости воды. Способность воды накапливать большие запасы тепловой энергии позволяет сглаживать резкие температурные колебания на прибрежных участках Земли в различные времена года и в различную пору суток: вода выступает как бы регулятором температуры на всей нашей планете. Следует отметить особое свойство воды – ее высокое поверхностное напряжение – 72, 7 эрг/см2 (при 20°С). В этом отношении из всех видов жидкостей вода уступает только ртути. Подобное свойство воды во многом обусловлено водородными связями между отдельными молекулами H2O. Особенно наглядно проявляется поверхностное напряжение в прилипании воды ко многим поверхностям– смачивании. Установлено, что вещества –глина, песок, стекло, ткани, бумага и многие другие, легко смачиваемые водой, непременно имеют в своем составе атомы кислорода. Такой факт оказался ключевым при объяснении природы смачивания: энергетически неуравновешенные молекулы поверхностного слоя воды получают возможность образовать дополнительные связи с “чужими” атомами кислорода.

Смачивание и поверхностное натяжение лежат в составе явления, названного капиллярностью: в узких каналах вода способна подниматься на высоту гораздо большую, чем та, которую “позволяет” сила тяжести для столбика данного сечения.

В капиллярах вода обладает поразительными свойствами. Б. В. Дерягин установил, что в капиллярах вода, сконденсировавшаяся из водяного пара, не замерзает при 0° и даже при снижении температуры на десятки градусов.

Молекулы воды отличаются большой термической устойчивостью, при деструкции по схеме: 2H2O Ы 2H2 + O2 + 2·245, 6 КДж. Начинается при температурах выше 1000°С, и при 2000°С составляет лишь 1, 8%. При 5000°С водяной пар со взрывом нацело разлагается на водород и кислород. Вода относится к слабым электролитам: H2O Ы H+ + OH

    _ [H+] [OH-] _
    Kдисс ` [H2O] ` 1, 8·10-16

Вода весьма реакционно-способное вещество: может проявлять как окислительные, так и восстановительные свойства. Так, под действием сильных восстановителей вода проявляет окислительные свойства: на холоде окисляет щелочные и щелочноземельные металлы, а при температуре накаливания– железо, углерод и др. 2Na + 2H2O ® 2NaOH + H2

    2Fe + 4H2O ® Fe3O4 +4H2

Под действием сильных окислителей (фтор, хлор, электрический ток) воды проявляет восстановительные свойства. Так, реакцию взаимодействия со фтором можно представить следующим образом:

    2F2 +2H2O Ы 2H2F2 + O2

Существует три типа присоединения воды к молекулам других веществ: по ионному, координатному и адсорбционному типу.

Присоединение по ионному типу происходит к оксидам щелочных, щелочноземельных и редкоземельных металлов, а также к кислотным оксидам:

    CaO + H2O ® Ca(OH)2
    P2O5 + 3H2O ® 2H3PO4

Вода, присоединяемая по ионному типу, называется конституционной. Она удаляется при нагревании с большим трудом. Так отщепление от едкого натра начинается при 1388°С:

    2NaOH ® Na2O + H2O

К ионам металлов – комплексообразователей присоединение идет по координатному принципу: CaCl2 + CH2O ® [Ca(H2O)6]·Cl2

Полученные соединения называются аквакомплексами, а вода, вошедшая в их состав, -кристаллизационной. Кристаллизационная вода удаляется легче, чем конституционная, например, при выветривании.

Различные вещества адсорбируют на своей поверхности некоторое количество воды за счет межмолекулярных сил притяжения. Вода, присоединенная по абсорбционному типу, называетсягигроскопической; она удаляется легче, чем кристаллизационная.

    Ионный состав природных вод.

Происходящее в почвах окисления органических веществ вызывают расход кислорода и выделение углекислоты, поэтому в воде при фильтрации её через почву возрастает содержание углекислоты, что приводит к обогащению природных вод карбонатами кальция, магния и железа, с образованием растворимых в воде кислых солей типа:

    СаСО3 + H2O + СO2 ® Са(НСОз)2

Бикарбонаты присутствуют почти во всех водах в тех или иных количествах. Большую роль в формировании химического состава воды играют подстилающие почву грунты, с которыми вода вступает в соприкосновение, фильтруясь и растворяя некоторые минералы. Особенно интенсивно обогащают воды осадочные породы, такие, как известняки, доломиты, мергели, гипс, каменная соль и др. В свою очередь почва и породы обладают способностью адсорбировать из природной воды некоторые ионы (например, Са+2, Mg+2), замещая их эквивалентным количество других ионов (Na+, К+). Подпочвенными водами легче всего растворяются хлориды и сульфаты натрия и магния, хлорид кальция. Силикатные и алюмосиликатные породы (граниты, кварцевые породы и т. д. ) почти нерастворимы в воде и содержащей углекислоту и органические кислоты.

Наиболее распространенными в природных водах являются следующие ионы: С1-, SO4-, НСО3, СО3-, Na+, Mg2+, Са2+, H+. Ион хлора присутствует почти во всех природных водоемах, причем его содержание меняется в очень широких пределах. Сульфат - ион также распространен повсеместно. Основным источником растворенных в воде сульфатов является гипс. В подземных водах с содержанием сульфат - иона обычно выше, чем в воде рек и озер. Из ионов щелочных металлов в природных водоемах в наибольших количествах находится ион натрия, который является характерным ионом сильноминерализованных вод морей и океанов.

Ионы кальция и магния в маломинерализованных водах занимают первое место. Основным источником ионов кальция является известняки, а магния - доломиты (MgCO3, СаСО3). Лучшая растворимость сульфатов и карбонатов магния позволяет присутствовать ионам магния в природных водах в больших концентрациях, чем ионов кальция. Ионы водорода в природной воде обусловлены диссоциацией угольной кислоты. Большинство природных вод имеют рН в пределах 6, 5 - 8, 5. Для поверхностных вод, в связи с меньшим содержанием в них углекислоты, рН обычно выше, чем для подземных.

Соединения азота в природной воде представлены ионами аммония, нитритными, нитратными ионами за счет разложения органических веществ животного и растительного происхождения. Ионы аммония, кроме того, попадают в водоемы со сточными промышленными водами.

Соединения железа очень часто встречаются в природных водах, причем переход железа в раствор может происходить под действием кислорода или кислот (угольной, органических). Так, например, при окислении весьма распространенного в породах пирита получается сернокислое железо:

    FeS2 + 4O2 ® Fe2+ + 2SO42-,
    а при действии угольной кислоты – карбонат железа:
    FeS2 + 2Н2СОз ® Fe2+ + 2НСОз + H2S + S.

Соединения кремния в природных водах могут быть в виде кремниевой кислоты. При рН>8 кремниевая кислота находится практически в недиссоциированном виде; при рН П - только HSiOз . Часть кремния находится в коллоидном состоянии, с частицами состава HSiO2·H2O , а также в виде поликремневой кислоты: X·SiO2·Y·H2O. В природных водах присутствуют также Аl3+, Mg2+ и другие катионы. Помимо веществ ионного типа природные воды содержат также газы и органические и грубодисперсные взвеси. Наиболее распространенными в природных водах газами являются кислород и углекислый газ. Источником кислорода является атмосфера, углекислоты - биохимические процессы, происходящие в глубинных слоях земной коры, углекислота из атмосферы.

Из органических веществ, попадающих извне, следует отметить гуминовые вещества, вымываемые водой из гумусовых почв (торфяников, сапропелитов и др. ). Большая часть из них находится в коллоидном состоянии. В самих водоемах органические вещества непрерывно поступают в воду в результате отмирания различных водных организмов. При этом часть из них остается взвешенной в воде, а другая опускается на дно, где происходит их распад.

Грубодисперсные примеси, обуславливающие мутность природных вод, представляют собой вещества минерального и органического происхождения, смываемые с верхнего покрова земли дождями или талыми водами во время весенних паводков.

    Подземные воды.

Советский ученый Лебедев на основе многочисленных экспериментов разработал классификацию видов воды в почвах и грунтах. Представления А. Ф. Лебедева, получившие дальнейшее развитие в более поздних исследованиях, позволили выделить следующие виды воды в горных породах: в форме пара, связанную, свободную, в твердом состоянии.

Паро-образованная вода занимает в породе поры, не заполненные жидкой водой, и перемещается за счет различной величины упругости пара или потоком воздуха. Конденсируясь на частицах породы, водяные пары переходят в другие виды влаги. Различают несколько видов связанной воды. Сорбированная вода удерживается частицами породы под влиянием сил, возникающих при взаимодействии молекул воды с поверхностью этих частиц и с обменными катионами. Сорбированную воду разделяют на прочносвязанную и рыхлосвязанную. Если влажную глину подвергать давлению, то даже под давлением в несколько тысяч атмосфер часть воды невозможно удалить из глины. Это прочносвязанная вода. Полное удаление такой воды достигается лишь при температуре 150 - 300°С. Чем меньше минеральные частицы, слагающие породу, и, следовательно, выше их поверхностная энергия, тем большее количество прочносвязанной воды в этой породе. Рыхлосвязанная, или пленочная, вода образует плёнку вокруг минеральных частиц. Она удерживается слабее и довольно легко удаляется из породы под давлением. Особенно важную роль играет сорбированная вода в глинистых породах. Она влияет на прочностные свойства глин и фильтрационную способность.

Как уже указывалось, связанная вода участвует в строении кристаллических решёток некоторых минералов. Кристаллизационная вода входит в состав кристаллической решётки. Гипс, например, содержит две молекулы воды CaSО4·2H2О. При нагревании гипс теряет воду и превращается в ангидрит (CaSО4). Известно, что при температуре около 4°С вода имеет максимальную плотность 1, 000 г/см3. При 100°С её плотность - 0, 958 г/см3, при 250°С - 0, 799 г/см3. За счет пониженной плотности происходит конвективное, восходящее движение нагретых подземных вод.

Принято считать, что вода практически несжимаема. Действительно, коэффициент сжимаемости воды, показывающий, на какую долю первоначального объема уменьшится объём воды при увеличении давления на 1 ат, очень мал. Для чистой воды он равен 5•10-51/ат. Однако упругие свойства воды, а также водовмещающих пород играют важнейшую роль в подземной гидродинамике. За счет сил упругости создается напор подземных вод. Температура и давление действуют на плотность воды в противоположном направлении.

Плотность подземных вод зависит также от их химического состава и концентрации солей. Если пресные подземные воды имеют плотность, близкую к 1 г/см3, то плотность концентрированных рассолов достигает 1, 3 - 1, 4 г/см3. Повышение температуры приводит к значительному уменьшению вязкости подземных вод и, таким образом, облегчает их движение через мельчайшие поры. Подземные воды исключительно разнообразны по своему химическому составу. Высокогорные источники обычно дают очень пресную воду с низким содержанием растворенных солей, иногда менее 0, 1 г. в 1 л. , а в одной из скважин в Туркменистане был рассол с минерализацией 547 г/л.

    Загрязнение.

Под загрязнением водоемов понимается снижение их биосферных функций и экономического значения в результате поступления в них вредных веществ. Одним из видов загрязнения водоемов является тепловое загрязнение. Электростанции, промышленные предприятия часто сбрасывают подогретую воду в водоем. Это приводит к повышению в нем температуры воды. С повышением температуры в водоеме уменьшается количество кислорода, увеличивается токсичность загрязняющих воду примесей, нарушается биологическое равновесие. В загрязненной воде с повышением температуры начинают бурно размножаться болезнетворные микроорганизмы и вирусы. Попав в питьевую воду, они могут вызвать вспышки различных заболеваний.

В ряде регионов важным источником пресной воды являлись подземные воды. Раньше они считались наиболее чистыми. Но в настоящее время в результате хозяйственной деятельности человека многие источники подземной воды также подвергаются загрязнению. Нередко это загрязнение настолько велико, что вода из них стала непригодной для питья.

Человечество потребляет на свои нужды огромное количество пресной воды. Основными ее потребителями являются промышленность и сельское хозяйство. Наиболее водоемкие отрасли промышленности - горнодобывающая, сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит до 70% всей воды, затрачиваемой в промышленности. Главный же потребитель пресной воды - сельское хозяйство: на его нужды уходит 60-80% всей пресной воды. В современных условиях сильно увеличиваются потребности человека в воде на коммунально-бытовые нужды. Объем потребляемой воды для этих целей зависит от региона и уровня жизни, составлял от 3 до 700 л на одного человека, в Москве, например, на каждого жителя приходится около 650 л, что является одним из самых высоких показателей в мире.

Из анализа водопользования за 5-6 прошедших десятилетий вытекает, что ежегодный |прирост безвозвратного водопотребления, при котором использованная вода безвозвратно теряется для природы, составляет 4-5%. Перспективные расчеты показывают, что при сохранении таких темпов потребления и с учетом прироста населения и объемов производства к 2100 г. человечество может исчерпать все запасы пресной воды.

Уже в настоящее время недостаток пресной воды испытывают не только территории, которые природа обделила водными ресурсами, но и многие регионы, еще недавно вчитавшиеся благополучными в этом отношении. В настоящее время потребность в пресной воде не удовлетворяется у 20% городского и 75% сельского населения планеты.

Вмешательство человека в природные процессы затронуло даже крупные реки (такие, как Волга, Дон, Днепр), изменив в сторону уменьшения объемы переносимых водных масс (сток рек). Используемая в сельском хозяйстве вода по большей части расходуется на испарение и образование растительной биомассы и, следовательно, не возвращается в реки. Уже сейчас в наиболее обжитых районах страны сток рек сократился на 8%, а у таких рек, как Дон, Терек, Урал - на 1 1-20%. Весьма драматична судьба Аральского моря, по сути, прекратившего существование из-за чрезмерного забора вод рек Сырдарьи и Амударьи на орошение. Ограниченные запасы пресной воды еще больше сокращаются из-за их загрязнения. Главную опасность представляют сточные воды (промышленные, сельскохозяйственные и бытовые), поскольку значительная часть использованной воды возвращается в водные бассейны в виде сточных вод.

    Загрязнение поверхностных вод.

Качество воды большинства водных объектов не отвечает нормативным требованиям. Многолетние наблюдения за динамикой качества поверхностных вод обнаруживают тенденцию увеличения числа створов с высоким уровнем загрязненности (более 10 ПДК) и числа случаев экстремально высокого содержания (свыше 100 ПДК) загрязняющих веществ в водных объектах.

Состояние водных источников и систем централизованного водоснабжения не может гарантировать требуемого качества питьевой воды, а в ряде регионов (Южный Урал, Кузбасс, некоторые территории Севера) это состояние достигло опасного уровня для здоровья человека. Службы санитарно-эпидемиологического надзора постоянно отмечают высокое загрязнение поверхностных вод.

Около 1/3 всей массы загрязняющих веществ вносится в водоисточники с поверхностным и ливневым стоком с территорий санитарно неблагоустроенных мест, сельскохозяйственных объектов и угодий, что влияет на сезонное, в период весеннего паводка, ухудшение качества питьевой воды, ежегодно отмечаемое в крупных городах, в том числе и в Москве. В связи с этим проводится гиперхлорирование воды, что, однако небезопасно для здоровья населения в связи с образованием хлорорганических соединений.

Одним из основных загрязнителей поверхностных вод является нефть и нефтепродукты. Нефть может попадать в воду в результате естественных ее выходов в районах залегания. Но основные источники загрязнения связаны с человеческой деятельностью: нефтедобычей, транспортировкой, переработкой и использованием нефти в качестве топлива и промышленного сырья.

Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и живые организмы занимают токсичные синтетические вещества. Они находят все более широкое применение в промышленности, на транспорте, в коммунально-бытовом хозяйстве. Концентрация этих соединений в сточных водах, как правило, составляет 5-15мг/л при ПДК - 0, 1 мг/л. Эти вещества могут образовывать в водоёмах слой пены, особенно хорошо заметный на порогах, перекатах, шлюзах. Способность к пенообразованию у этих веществ появляется уже при концентрации 1-2 мг/л.

Наиболее распространенными загрязняющими веществами в поверхностных водах являются фенолы, легко окисляемые органические вещества, соединения меди, цинка, а в отдельных регионах страны - аммонийный и нитритный азот, лигнин, ксантогенаты, анилин, метил меркаптан, формальдегид и др. Огромное количество загрязняющих веществ вносился в поверхностные воды со сточными водами предприятий черной и цветной металлургии, химической, нефтехимической, нефтяной, газовой, угольной, лесной, целлюлозно-бумажной промышленности, предприятий сельского и коммунального хозяйства, поверхностным стоком с прилегающих территорий.

Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения.

Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий-производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками. Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме.

Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно “умирает”.

Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования водоемов.

Эвтрофизация - обогащение водоема биогенами, стимулирующее рост фитопланктона. 0т этого вода мутнеет, гибнут бентосные растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски. Во многих водных объектах концентрации загрязняющих веществ превышают ПДК, установленные санитарными и рыбоохранными правилами.

    Загрязнение подземных вод.

Загрязнению подвергаются не только поверхностные, но и подземные воды. В целом состояние подземных вод оценивается как критическое и имеет опасную тенденцию дальнейшего ухудшения.

Подземные воды (особенно верхних, неглубоко залегающих, водоносных горизонтов) вслед за другими элементами окружающей среды испытывают загрязняющее влияние хозяйственной деятельности человека. Подземные воды страдают от загрязнения нефтяных промыслов, предприятий горнодобывающей промышленности, полей фильтрации, шламонакопителей и отвалов металлургических заводов, хранилищ химических отходов и удобрений, свалок, животноводческих комплексов, не канализированных населенных пунктов. Происходит ухудшение качества воды в результате подтягивания некондиционных природных вод при нарушении режима эксплуатации водозаборов. Площади очагов загрязнения подземных вод достигают сотен квадратных километров. Из загрязняющих подземные воды веществ преобладают: нефтепродукты, фенолы, тяжелые металлы (медь, цинк, свинец, кадмий, никель, ртуть), сульфаты, хлориды, соединения азота, Перечень веществ контролируемых в подземных водах не регламентирован, поэтому нельзя составить точную картину о загрязнении подземных вод.

    Загрязнение на территории Хабаровского края.

В нашем крае 204506 рек (150 из них протяженностью более 50 км). Главная, конечно же, Амур–одна из великих рек в мире. Ее проблемами занимается в крае институт водных и экологических проблем, в котором ученые координируют все вопросы, связанные с экосистемой бассейна реки–т. е. проиродного комплекса, состоящего из живой и мертвой природы, связанной через цепи питания.

    На качество питьевой воды влияют:
    Качество воды в водоисточнике
    Система водопроводов
    Состояние транспортирующей воду сети

Сегодня загрязнение водной среды сточными водами приобретают угрожающие размеры. Первичные загрязнения возникают при попадении в реку сточных вод. Все эти вещества, влючаясь в сложные биохимические процессы, аккумулируются в живом организме, преобразуются при его отмирании. Это уже вторичное загрязнение в самой реке. В воде накапливаются органические соединения, они становятся факторами экологического риска.

Амур не справляется с потоками загрязнения веществ, поступающих с площади водозабора, поэтому они накапливаются в экосистеме.

Соседи наши – Китай –густонаселенная страна, на ее берешах расположены промышленные и коммунальные предприятия, которые сбрасывают воду в Амур, пратически без очистки, то есть проблемы чистоты Амура становится международной.

Амур приближается к пределу своих возможностей. Самому справиться со смертельно губительными отходами, которые сбрасываются людьми, надеясь при этом быть живыми и здоровыми. Этот кризис мы рассматриваем как итог нерационального использования ресурсов на берегах Амура. А антропогенное влияние на реку– ее загрязнение – вследствие неразумной деятельности человека. Эту проблемы краевой комитет по использованию природных ресурсов обозначил так: “Деградация водных объектов реки Амур происходит ускоренными темпами”! Но существуют и пути выхода из сложившейся ситуации:

Все дальневосточные регионы, хозяйственная деятельность которых связана с преобразованием среды, должны быть едины не только в освоении современных технологиях защиты окружающей среды. Они должны объединиться вокруг коллективной идеи экологического мониторинга и понять, что экосистема Амура– это часть единого целого – биосферы. На Амуре уже недостаточно осуществляется мониторинг за изменением отдельных показателей–необходим постоянный анализ и прогноз возможных отклонений в связи с изменением экологических факторов.

Необходим комплексный подход к экологичесим проблемам – принята Федеральная программа развития ДВ и Сибири –в ней четко обозначены мероприятия по охране окружающей среды обитания человека и решение проблем для обеспечения межгосударственных экологичесих проблем для обеспечения развития территорий субъектов федерации в бассейне реки Амур. В целом чистота нашей реки зависит от усилений и координации ученых, власти и нравственной ответствен-ности каждого жителя нашего региона!

    Заключение.

Серьезное препятствие для использования канализационного ила и богатых биогенами уточных вод в сельском хозяйстве - их промышленное загрязнение. Индустрия часто сбрасывает свои отходы, содержащие такие ядовитые вещества, как свинец, ртуть, хром и не разлагаемую биологически органику, в муниципальные системы. А различные стадии обработки канализационных стоков не устраняют эти химические компоненты, которые губят организмы, используемые при вторичной очистке, тем самым, снижая ее эффективность. Кроме того, они связываются с органическим веществом, и попадаю в обработанный ил, делая его неприменимым в сельском хозяйстве, поскольку он становится токсичным для растений. Аналогичным образом такие сточные воды непригодны для орошения.

Однако Акт о чистой воде в настоящее время требует от промышленных предприятий либо очищать от токсичных элементов сточные воды перед их сбросом в муниципальные системы канализации, либо находить альтернативные способы избавления от них. Когда нормы по такой предварительной очистке и контроль над их соблюдением станут более строгими, канализационный ил и сточные воды станут шире применятся в жизнедеятельности человека. (Орошение и т. п. )

    Список литературы:

Панина “Состав, свойства и методы очистки сточных вод предприятий горной промышленности” (1990 год)

    И. Ф. Ливчак, Ю. В. Воронов “Охрана окружающей сре
    ды”
    3. Н. М. Чернова, А. М. Быков “Экология”

В. Ф. Протасова “Экология, здоровье и природоиспользование в Рос сии”

    5. Б. Небел “Наука об окружающей среде”

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011