Главная » Рефераты    
рефераты Разделы рефераты
рефераты
рефератыГлавная
рефератыЕстествознание
рефератыУголовное право уголовный процесс
рефератыТрудовое право
рефератыЖурналистика
рефератыХимия
рефератыГеография
рефератыИностранные языки
рефератыРазное
рефератыИностранные языки
рефератыКибернетика
рефератыКоммуникации и связь
рефератыОккультизм и уфология
рефератыПолиграфия
рефератыРиторика
рефератыТеплотехника
рефератыТехнология
рефератыТовароведение
рефератыАрхитектура
рефератыАстрология
рефератыАстрономия
рефератыЭргономика
рефератыКультурология
рефератыЛитература языковедение
рефератыМаркетинг товароведение реклама
рефератыКраеведение и этнография
рефератыКулинария и продукты питания
рефераты
рефераты Информация рефераты
рефераты
рефераты

Расчет вала АЗОТадувки

Расчет вала АЗОТадувки

3. Расчет вала.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой

твердости цапф, поэтому их изготавливают из цементируемых сталей 2 х

13(ГОСТ 5632 –61)с пределом прочности и текучести:

?в = 65 Мпа

?т = 45 Мпа

1. Расчет статической прочности, жесткости и устойчивости вала.

Основными для вала являются постоянные и переменные нагрузки от рабочего

колеса.

На статическую прочность вал рассчитываем по наибольшей возможной

кратковременной нагрузке, повторяемость которой мала и не может вызывать

усталостного разрушения. Так как вал в основном работает в условиях изгиба

и кручения, а напряжение от продольных усилий не велики, то эквивалентное

напряжение в наружного вала:

[pic]

Где: ?н – наибольшее напряжение при изгибе моментом Ми.

[pic]

?к – наибольшее напряжение при кручении моментом.

[pic]

Wк и Wн – соответственно осевой и полярный моменты сопротивления сечения

вала.

[pic] [pic]

Для вала круглого сплошного сечения Wк = 2 Wн, в этом случае:

[pic]

Где: D – диаметр вала = 5,5 м;

Запас прочности по пределу текучести

[pic]

Обычно Пт = 1,2 – 1,8.

2. Расчет на усталостную прочность.

На практике переменная внешняя нагрузка изменятся либо по симметричному,

либо по асимметричному циклу.

Наибольшие напряжения будут действовать в точках наружных волокон вала.

[pic] [pic];

[pic] [pic]

Амплитуды и средние напряжения циклов нормальных и касательных напряжений

будут:

[pic] [pic]

[pic] [pic]

Если амплитуды и средние напряжения возрастают при нагружении

пропорционально, то запас прочности определяют из соотношения:

[pic]

Где: n ? и n ? – соответственно запасы прочности по нормальным и

касательным напряжениям.

[pic] [pic]

Если известны пределы выносливости реальной детали, то равенство можно

переписать в виде.

[pic] [pic]

6.

В равенствах (а) и (б) ? = 1 и ? – 1 q – пределы выносливости стандартного

образца и детали при симметричном изгибе; ? –1 и ?1-q – то же при кручении

R? и R? – эффектные коэффициенты концентрации соответственно нормальных и

касательных напряжений.

При отсутствии данных значения R? и R? можно вычислить из соотношений.

7.

Здесь ?? и ?? – теоретические коэффициенты концентрации напряжений при

изгибе и кручении.

G – коэффициент чувствительности материала к концентрации напряжений.

Значения эффективных коэффицтентов концентраций напряжений для прессовых

соединений валов и дисков в таблице.

Е? и Е? – коэффициенты, учитывающие масштабный эффект при изгибе и

кручении.

?? и ?? – коэффициенты, учитывающие влияние состояния поверхности.

?v и ?? – коэффициент, характеризующий чувствительность материала к

ассиметррии цикла напряжений

В приближенных расчетах принимают ?? = 0,1 –0,2 для углеродистых сталей при

?? < 50 кгс/мм2 ;

?v = 0,2 –0,3 для легированных сталей, углеродистых сталей при ?? > 50

кгс/мм2 ;

?? = 0,5 ?? – титановые и легкие сплавы.

Принимаем при азотодувке ? = 1,175 (1,1 – 1,25)

Для легированных сталей

?v = 0,25; ?? = 0,5 * 0,25 = 0,125

Пределы выносливости при изгибе и кручении

?-1 = (0,45 – 0,55) ??

?-1 = (0,5 –0,65) ?-1

?-1 = 0,5 * 65 = 32,5 (Мпа)

?-1 = 0,575 * 32,5 = 18,68 (Мпа)

Во время работы нагнетателя на вал действуют;

1. крутящийся момент;

2. изгибающий момент;

3. осевое усилие.

Составляем уравнение состояния вала:

?ma = Р * а + m – RB *B = 0 ,

?mв = Ra * B – P (а + В) + m = 0

8.

Нагрузка, действующая на вал: P = 2 Mkp / D, где:

D –диаметр рабочего колеса (М) = 0,06

9.

Где: N – мощность дантера в КВт из газодинамического расчета.

N = 20,33 (КВт);

W – частота вращения ротора (с-1)

W = 126 (с-1)

10.

11.

Проверка:

?m =0, ?m = - P + Ra – Rb = 0, ?m = - 5366,6 + 9089,1 – 3722,5 = 0

Определяем перерывающие силы и строим их эпюру.

1. Qec =0

2. Qуа сл = - Р = - 5366,6 (Н)

3. Qуа спр = - Р + Ra = - 5366,6 + 9089,1 = 3722,5

4. Qур = - Р + Ra – RB = - 5366,6 + 9089,1 – 3722,5 = 0

Определяем изгибающие моменты и строим их эпюру (рис.

1).

1. Мх0 сл = 0.

2. Мх0 сл = - М = - 161 (Н * м)

3. Мх1 сл = - Р Х1 – М, где: Х1 изменяется от 0 до 0,018, значит:

При Х0 = 0; Мх1 = - М = - 161 (Н * м)

При Х1 = 0,018; Мх1 = - 5366,6 * 0,018 – 161 = - 257,6

4. Мх2 сл = - Р Х2 – М, где Х2 изменяется от 0,018 до 0,025

При Х2 = 0,025

Мх2 сл = - 5366,6 * 0,025 – 161 = - 295,17

5. Мх3 сл = - Р Х3 – М, где Х3 изменяется от 0,025 до 0,045

При Х3 = 0,045

Мх3 сл = - 5366,6 * 0,045 – 161 = - 402,5

6. Мх4 сл = - Р Х4 – М, где Х4 изменяется от 0,045 до 0,068

При Х3 = 0,068

Мх4 сл = - 5366,6 * 0,068 – 161 = - 525,9

7. Мх5 сл = - Р Х5 – М, где Х5 изменяется от 0,068 до 0,075

При Х3 = 0,075

Мх5 сл = - 5366,6 * 0,075 – 161 = - 563,5

8. Мх6 сл = - Р Х6 – М, где Х6 изменяется от 0,075 до 0,09

При Х6 = 0,09

Мх6 сл = - 5366,6 * 0,09 – 161 = - 643,9

9. Мх6 спр = - R в (Х10 – Х6); при Х6 = 0,09

Мх6 спр = - 3722,5 ( 0,263 – 0,09) = - 643,9

10. Мх7 спр = - R в (Х10 – Х7); при Х7 = 0,1

Мх7 спр = - 3722,5 ( 0,263 – 0,1) = - 606,8

11. Мх8 спр = - R в (Х10 – Х8); при Х8 = 0,1 – 0,176

Мх8 спр = - 3722,5 ( 0,263 – 0176) = - 323,9

12. Мх9 спр = - R в (Х10 – Х9); при Х9 = 0,176 – 0,253

Мх9 спр = - 3722,5 ( 0,263 – 0,253) = - 37,2

13. Мх10 спр = - R в (Х10 – Х10); при Х10 = 0,253 – 0,263

Мх10 спр = 0

рефераты Рекомендуем рефератырефераты

     
Рефераты @2011