Детали машин
Детали машин
СОДЕРЖАНИЕ
|Выбор электродвигателя и кинематический расчет привода. |3 |
| | |
|Расчет зубчатых колес редуктора |4 |
| | |
|Предварительный расчет валов |6 |
| | |
|Конструктивные размеры шестерни и колеса |7 |
| | |
|Конструктивные размеры корпуса редуктора |7 |
| | |
|Расчет цепной передачи |8 |
| | |
|Первый этап компоновки редуктора |10 |
| | |
|Проверка долговечности подшипника |11 |
| | |
|Второй этап компоновки редуктора |14 |
| | |
|Проверка шпоночного соединения |15 |
| | |
|11. Уточненный расчёт валов |15 |
| | |
|12. Выбор сорта масла |17 |
| | |
|13. Сборка редуктора |18 |
| | |
|14. Список используемой литературы |19 |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
1. Выбор электродвигателя и кинематический расчёт
Технические данные
P2=4,5 кВт
n2=100 об/мин
1.1 Определение общей КПД установки
[pic], где
[pic]=0,98 - КПД цепной передачи
[pic]=0,99 - Две пары подшипников качения
[pic]=0,92 - КПД зубчатой передачи
[pic]=0,99 - КПД муфты
1.2 Определяем требуемую мощность электродвигателя.
1.3 Определяем требуемую частоту вращения.
[pic]
где Uц.п. =3 ;Uред =4
nдв =nзЧUобщ=100Ч12=1200
1.4 Выбираем тип двигателя по таблице П1. Это двигатель 4А100L4УЗ с
ближайшим большим значением мощности 4 кВт, с асинхронной частотой
вращения 1500 об/мин и S =4,7%. Этому значению номинальной мощности
соответствует частота вращения nном =1500-47=1453 об/мин.
1.5 Определяем общее передаточное число установки.
1.51 По ГОСТ 2185-66 принимаем Uред =4
1.6 Пересчитываем Uц.п.
[pic]
1.7 Определяем вращающий момент на валах
1.71 Вращающий момент на валу шестерни
[pic]
1.72 Вращающий момент на валу колеса
[pic][pic]
2. Расчет зубчатых колёс редуктора
2.1 Выбор материалов для передач
Так как в задании нет особых требований в отношении габаритов передачи,
выбираем материалы со средними механическими характеристиками по таблице
3.3: для шестерни сталь 45, термообработка – улучшение, твёрдость НВ 230;
для колеса ( сталь 45, термообработка – улучшение, но твёрдость на 30
единиц ниже – НВ 200.
Допускаемые контактные напряжения
где (н lim b – предел контактной выносливости при базовом числе циклов. По
табл. 3.2[1] для углеродистых сталей с твёрдостью поверхностей зубьев менее
НВ 350 и термообработкой (улучшение)
КHL – коэффициент долговечности; при числе циклов нагрузки больше базового,
что имеет место при длительной эксплуатации редуктора, принимают КHL=1;
[n]H=1,1
2.2Принимаем допускаемое напряжение по колесу
Для колеса
[pic]
Тогда расчетное допускаемое напряжение
[pic]
Коэффициент нагрузки [pic], несмотря на симметричное расположение колес
относительно опор, примем выше для этого случая, так как со стороны
клиноременной передачи действуют силы, вызывающие дополнительную деформацию
ведомого вала и ухудшающие контакт зубьев. Принимаем предварительно по
табл. 3.1[1], как в случае несимметричного расположения колес, значение
[pic]=1,25.
Принимаем коэффициент ширины венца по межосевому расстоянию[pic]
Межосевое расстояние из условия контактной выносливости активной
поверхности зубьев (по формуле (3.8) [1]).
[pic]
Здесь принято [pic]. Ближайшее стандартное значение [pic]. Нормальный
модуль зацепления
[pic]; принимаем [pic](стр.36 [1])
2.3 Угол наклона зубьев [pic]. Определим число зубьев шестерни и колеса:
[pic]; принимаем z1=28
тогда [pic] принимаем z2=112
2.4 Основные размеры шестерни и колеса:
2.41 Диаметры делительные:
[pic]; [pic].
Проверка: [pic].
2.42 Диаметры вершин зубьев:
[pic]; [pic];
ширина колеса [pic];
ширина шестерни [pic].
2.43 Определяем коэффициент ширины шестерни по диаметру:
[pic].
2.44 Окружная скорость колес и степень точности передачи
[pic]м/с,
где - ?1=[pic]
[pic]
При такой скорости следует принять 8-ю степень точности (стр.32 [1])
2.5 Коэффициент нагрузки
[pic]
Значения [pic] даны в табл.3.5[1]: при [pic], твердости [pic] и
несимметричном расположении колес относительно опор с учетом изгиба
ведомого вала от натяжения цепной передачи [pic].
По табл. 3.4[1] при [pic] и 8-й степени точности [pic]. По табл.
3.6[1] для прямозубых колес при [pic] имеем [pic]. Таким образом,
[pic].
2.6 Проверка контактных напряжений по формуле (3.6)[1]:
[pic]
2.7Силы, действующие в зацеплении:
2.71 Окружная [pic];
2.72 Радиальная [pic];
2.73 Осевая [pic]
2.8 Проверяем зубья на выносливость по напряжениям изгиба по формуле
(3.25)[1]:
[pic]
Здесь коэффициент нагрузки [pic].
По табл. 3.7[1] при [pic], твердости [pic] и несимметричном расположении
зубчатых колес относительно опор [pic]. По табл. 3.8[1] [pic]. Таким
образом, коэффициент [pic].
2.81[pic]–коэффициент прочности зуба по местным напряжениям, зависящий от
эквивалентного числа зубьев [pic]:[pic]
у шестерни [pic];
у колеса [pic].
При этом [pic] и [pic] (стр.42 [1]).
Допускаемое напряжение – по формуле (3.24)[1]:
[pic].
По табл. 3.9[1] для стали 45 улучшенной при твердости [pic] [pic] .
Для шестерни [pic];
для колеса [pic].
[pic]–коэффициент запаса прочности(3.24)[1], где [pic]; [pic].
Следовательно, [pic].
Допускаемые напряжения:
для шестерни [pic],
для колеса [pic].
Находим отношения [pic];
для шестерни [pic];
для колеса [pic].
Дальнейший расчет следует вести для зубьев колеса, для которого найденное
отношение меньше.
Определяем коэффициенты (( и КF(
[pic]?=1, т.к. ?=0
[pic]
Проверяем прочность зуба колеса по формуле (3.25)[1]:
[pic]
Условие прочности выполнено.
3. Предварительный расчет валов редуктора
Предварительный расчет проведем на кручение по пониженным допускаемым
напряжениям.
Ведущий вал:
диаметр выходного конца при допускаемом напряжении [pic](учитывая влияние
изгиба вала от натяжения ремней привода) по формуле (6.16)[1]
[pic].
Принимаем ближайшее большее значение из стандартного ряда(ГОСТ 6636-69):
[pic].
Примем под подшипниками [pic]. Шестерню выполним за одно целое с валом.
Ведомый вал:
Учитывая влияние изгиба вала от возможных натяжений, принимаем [pic].
Диаметр выходного конца вала
[pic].
Принимаем ближайшее большее значение из стандартного ряда: [pic]. Диаметр
вала под подшипниками принимаем [pic], под зубчатым колесом [pic].
Диаметры остальных участков назначают исходя из конструктивных
соображений при компоновке редуктора.
4. Конструктивные размеры шестерни и колеса
Шестерню выполняем за одно целое с валом, ее размеры: [pic], [pic],
[pic].
Колесо кованое, [pic], [pic], [pic].
Диаметр ступицы [pic]; длина ступицы [pic], из конструктивных соображений
принимаем [pic].
Толщина обода [pic], принимаем [pic].
Толщина диска [pic].
5. Конструктивные размеры корпуса редуктора
5.1 Толщина стенок корпуса и крышки:
[pic], принимаем [pic]; [pic], принимаем [pic].
5.2 Толщина фланцев поясов корпуса и крышки:
5.21 Верхний пояс корпуса и пояс крышки:
[pic];
[pic];
5.22 Нижний пояс корпуса
[pic], принимаем [pic].
5.3 Диаметры болтов:
5.31 Фундаментных [pic], принимаем болты с резьбой М20;
5.32 Крепящих крышку к корпусу у подшипников [pic], принимаем болты с
резьбой М16;
5.33 Соединяющих крышку с корпусом [pic], принимаем болты с резьбой М10.
6. Расчет цепной передачи
Выбираем приводную роликовую однорядную цепь (табл. 7.15)
6.1 Вращающий момент на ведущем валу:
Т3 = Т2 =97 Н?мм
6.2 Передаточное отношение было принято Uц =3,6
6.3 Число зубьев:
6.31 Ведущей звёздочки
[pic]
6.32 Ведомой звёздочки
[pic]
Принимаем [pic]
Тогда фактическое [pic]
6.4 Отклонение ?%
[pic], что допустимо.
6.5 Расчётный коэффициент нагрузки (табл.7.38)
[pic],
Где Кэ =динамический коэффициент при спокойной нагрузке; Ка =1 учитывает
влияние межосевого расстояния; Кн =1-учитывает влияние угла наклона линии
центров; Кр= 1,25 при периодическом регулировании натяжения цепи, Кр -
учитывает способ регулирования цепи; Ксм =1 при непрерывной смазке; Кп
=учитывает продолжительность работы в сутки, при односменной работе Кп =1.
6.6 Частота вращения звездочки (7.18)[1]
[pic],
где [pic]
Среднее значение допускаемого давления при [pic]
Шаг однорядной цепи:
[pic]
Подбираем по табл. 7.15[1] цепь ПР 15,875-22,70 по ГОСТ 13568-75, имеющую t
=31,75 мм; разрушающую нагрузку [pic][pic]
6.7 Скорость цепи.
[pic]
6.8 Окружная сила.
[pic]
6.9 Давление в шарнире проверяем по формуле (7.39)[1]
[pic],
уточняем по тал 7.18 допускаемое давление [p]= 34[1+0.01(Z3-17)] =36,38.
Условие [pic] выполнено.
6.10 Определяем число звеньев по формуле (7.36)[1]
[pic]
где at =[pic]=50; [pic]; [pic]
Тогда
[pic]
округляем до чётного числа [pic]
6.11 Уточняем межосевое расстояние цепной передачи по формуле (7.37)[1]
[pic]
[pic]=
[pic]
Для свободного провисания цепи предусматривает возможность уменьшения
межосевого расстояния на 0,4% т.е. на [pic]
6.12 Определим диаметры делительных окружностей звёздочек (см
формулу(7.34)[1]
[pic]
[pic]
6.13 Определим диаметры наружных поверхностей звездочек (7.35)[1]
[pic],
где d1 =10,16 мм- диаметр ролика цепи (табл.7.15)[1]
[pic]
[pic]
6.14 Силы, действующие на цепь:
6.14.1 Окружная [pic]
6.14.2 От центробежных сил [pic]
6.14.3 От провисания [pic]
6.15 Расчетная нагрузка на валы
[pic]
6.16 Проверяем коэффициент запаса прочности
[pic]
6.17 Размеры ведущей звездочки:
ступица звездочки dст =[pic]; [pic]
принимаем [pic]=40 мм
толщина диска звёздочки 0,93 Ввн =[pic],
где Ввн –расстояние между пластинками внутреннего звена
6.18 Размеры ведомой звездочки
[pic]
[pic], принимаем [pic]=60 мм
7. Первый этап компоновки редуктора
Компоновку обычно проводят в два этапа. Первый этап служит для
приближенного определения положения зубчатых колес относительно опор для
последующего определения опорных реакций и подбора подшипников.
Компоновочный чертеж выполняем в одной проекции — разрез по осям валов
при снятой крышке редуктора; желательный масштаб 1:1, чертить тонкими
линиями.
Примерно посередине листа параллельно его длинной стороне проводим
горизонтальную осевую линию; затем две вертикальные линии — оси валов на
расстоянии [pic].
Вычерчиваем упрощенно шестерню и колесо в виде прямоугольников; шестерня
выполнена за одно целое с валом; длина ступицы колеса равна ширине венца и
не выступает за пределы прямоугольника.
Очерчиваем внутреннюю стенку корпуса:
а) принимаем зазор между торцом шестерни и внутренней стенкой корпуса
[pic];
б) принимаем зазор от окружности вершин зубьев колеса до внутренней
стенки корпуса [pic];
в) принимаем расстояние между диаметром окружности вершин зубьев шестерни
и внутренней стенкой корпуса [pic](наружный диаметр подшипника меньше
диаметра вершин зубьев шестерни).
Предварительно намечаем радиальные шарикоподшипники средней серии;
габариты подшипников выбираем по диаметру вала в месте посадки подшипников
[pic] и [pic].
По табл. П3[1] имеем:
|Условное |d |D |B |Грузоподъемность, кН |
|обозначение| | | | |
|подшипника | | | | |
| |Размеры, мм |C |C0 |
|304 |20 |52 |15 |15,9 |7,8 |
|307 |35 |80 |21 |33,2 |18 |
Решаем вопрос о смазке подшипников. Принимаем для подшипников пластичную
смазку. Для предотвращения вытекания смазки внутрь корпуса и вымывания
пластичной смазки жидким маслом из зоны зацепления устанавливаем
мазеудерживающие кольца. Их ширина определяет размер [pic].
Замером находим расстояния на ведущем валу [pic] и на ведомом валу [pic].
Замером находим расстояние [pic], определяющее положение шкива
относительно ближайшей опоры ведомого вала. Примем окончательно [pic].
8. Проверка долговечности подшипника.
Ведущий вал. Из предыдущих расчетов имеем [pic]и [pic];[pic]; из первого
этапа компоновки [pic].
Реакции опор:
вертикальная плоскость:
в плоскости XZ
[pic]
В плоскости YZ
[pic]
Проверка: [pic] [pic]
[pic].
Суммарные реакции:
[pic]
[pic]
[pic]
Намечаем радиальные шариковые подшипники 304 (табл. П3)[1]:
[pic]; [pic]; [pic]; С=1939 кН и С0=7,8 кН.
Эквивалентная нагрузка по формуле (9.3)[1]
[pic],
в которой радиальная нагрузка Pr1=500H; осевая нагрузка Pa=0H; V=1
(вращается внутреннее кольцо); Кб=1 (табл. 7.2)[1]; Кт=1.05.
Отношения [pic];
Отношение [pic]
[pic].
Расчетная долговечность, млн. об. :
[pic]
Расчетная долговечность, ч,
[pic].
Ведомый вал.Из первого этапа компоновки [pic] и [pic];[pic]
[pic]
Реакции опор:
В плоскости XZ
[pic]
[pic]
Проверка:
[pic]
В плоскости YZ
[pic]
[pic]
Проверка:
[pic]
Суммарные реакции:
[pic];
[pic].
Выбираем подшипник по более нагруженной опоре 3.
Шариковые радиальные подшипники 307 средней серии(см.П3):
[pic]; [pic]; [pic]; С=33,2 кН и С0=18 кН.
Отношения [pic];
Отношение [pic]
[pic]
Расчетная долговечность, млн. об. :
[pic]
Расчетная долговечность, ч,
[pic];
Для зубчатых редукторов ресурс работы подшипников принимают от 36 000 ч
(таков ресурс самого редуктора) до 10 000 ч (минимально допустимая
долговечность подшипника). В нашем случае подшипники ведомого вала 304
имеют ресурс [pic], а подшипники ведомого вала 307 имеют [pic].
Строим эпюры:
Ведущий вал:
[pic]
Ведомый вал:
[pic]
10. Второй этап компоновки редуктора
Второй этап компоновки имеет целью конструктивно оформить зубчатые
колеса, валы, корпус, подшипниковые узлы и подготовить данные для проверки
прочности валов и некоторых других деталей.
Вычерчиваем шестерню и колесо по конструктивным размерам, найденным
ранее. Шестерню выполняем за одно целое с валом.
Конструируем узел ведущего вала:
а) наносим осевые линии, удаленные от середины редуктора на расстояние
[pic]. Используя эти осевые линии, вычерчиваем в разрезе подшипники
качения;
б) между торцами подшипников и внутренней поверхностью стенки корпуса
вычерчиваем мазеудерживающие кольца. Их концы должны выступать внутрь
корпуса на 1-2мм от внутренней стенки. Тогда эти кольца будут выполнять
одновременно роль маслоотбрасывающих колец. Для уменьшения числа ступеней
вала кольца устанавливаем на тот же диаметр, что и подшипники (Ш40мм).
Фиксация их в осевом направлении осуществляется заплечиками вала и торцами
внутренних колец подшипников;
в) вычерчиваем крышки подшипников с уплотнительными прокладками (толщиной
1мм) и болтами. Болт условно заводится в плоскость чертежа, о чем говорит
вырыв на плоскости разъема.
Используем фетровые уплотнения, т. к. допускаемое значение скорости
<5м/с.
г) переход вала Ш40мм к присоединительному концу Ш32мм выполняют на
расстоянии 10-15мм от торца крышки подшипника.
Длина присоединительного конца вала Ш32мм определяется длиной шкива.
Аналогично конструируем узел ведомого вала.
На ведущем и ведомом валах применяем шпонки призматические со
скругленными торцами по ГОСТ 23360-78. Вычерчиваем шпонки, принимая их
длины на 5-10мм меньше длин ступиц.
Непосредственным измерением уточняем расстояния между опорами и
расстояния, определяющие положение зубчатых колес относительно опор. При
значительном изменении этих расстояний уточняем реакции опор и вновь
проверяем долговечность подшипников.
11. Проверка прочности шпоночных соединений
Шпонки призматические со скругленными торцами. Размеры сечений шпонок
и пазов и длины шпонок по ГОСТ 23360-78.
Материал шпонок - сталь 45 нормализованная.
Напряжение смятия и условие прочности по формуле (6.22)[1]
[pic]
Допускаемое напряжение смятия при стальной ступице [pic], при чугунной
ступице [pic]
Ведущий вал
[pic]; [pic]; [pic]
[pic]
[pic]
Условие [pic] выполнено.
Ведомый вал
[pic]; [pic]; [pic]; длина шпонки [pic]; момент на ведущем валу [pic];
[pic]
Условие [pic] выполнено.
12. Уточненный расчет валов
Примем, что нормальные напряжения от изгиба измеряются по
симметричному циклу, а касательные от кручения – по отнулевому
(пульсирующему).
Уточненный расчет состоит в определении коэффициентов запаса прочности n
опасных сечений и сравнении их с требуемыми (допускаемыми) значениями [n].
Прочность соблюдена при n([n].
Будем производить расчет для предположительно опасных сечений каждого из
валов.
Ведущий вал.
Материал вала тот же, что и для шестерни (шестерня выполнена заодно с
валом), т.е. сталь 45, термообработка ( улучшение.
По табл. 3.3 при диаметре заготовки до 90мм (в нашем случае da1=78,96 мм)
среднее значение [pic]
Предел выносливости при симметричном цикле изгиба
[pic].
Предел выносливости при симметричном цикле касательных напряжений
[pic]
Сечение А–А. В этом сечении при передаче вращающего момента от
электродвигателя через муфту возникают только касательные напряжения.
Концентрацию напряжений вызывает наличие шпоночной канавки.
Коэффициент запаса прочности
[pic],
где амплитуда и среднее напряжение отнулевого цикла
[pic].
При d=32 мм; b=10 мм; t1=5 мм
[pic];
[pic].
Принимаем [pic], [pic] и [pic].
После подстановки
[pic].
Такой большой коэффициент запаса прочности объясняется тем, что диаметр
вала был увеличен при конструировании для согласования по размеру с
диаметром вала электродвигателя.
По той же причине проверять прочность в сечениях Б–Б и В–В нет
необходимости.
Ведомый вал.
Материал вала – сталь 45 нормализованная, [pic].
Пределы выносливости [pic] и [pic].
Сечение А–А.
Изгибающий момент в горизонтальной плоскости
[pic];
изгибающий момент в вертикальной плоскости
[pic];
суммарный изгибающий момент в сечении А–А
[pic].
Момент сопротивления кручению ([pic]; [pic]; [pic])
[pic].
Момент сопротивления изгибу
[pic].
Амплитуда и среднее напряжение цикла касательных напряжений
[pic].
Амплитуда нормальных напряжений изгиба
[pic]; среднее напряжение [pic].
Коэффициент запаса прочности по нормальным напряжениям
[pic].
Коэффициент запаса прочности по касательным напряжениям
[pic].
Результирующий коэффициент запаса прочности для сечения А–А
[pic].
13. Посадки зубчатого колеса, звездочки и подшипников
Посадки назначаем в соответствии с указаниями, данными в табл. 8.11[1].
Посадка зубчатого колеса на вал Н7/р6 по ГОСТ 25347-82.
Посадка звездочки цепной передачи на вал редуктора Н7/h6.
Шейки валов под подшипники выполняем с отклонением вала к6. Отклонения
отверстий в корпусе под наружные кольца по Н7.
Остальные посадки назначаем, пользуясь данными табл. 8.11[1].
14. Выбор сорта масла
Смазка зубчатого зацепления производится окунанием зубчатого колеса в
масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение
колеса примерно на 10 мм. Объем масляной ванны Vм определяем из расчета
0,25 дм3 масла на 1 кВт передаваемой мощности: [pic].
По табл. 10.8[1] устанавливаем вязкость масла. При скорости [pic]
рекомендуемая вязкость [pic].Принимаем масло индустриальное И-30А по ГОСТ
29799-75.
Подшипники смазываем пластичной смазкой, которую закладывают в
подшипниковые камеры при сборке. Периодически смазку пополняют через пресс-
масленки. Сорт смазки – УТ-1.
15. Сборка редуктора
Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и
покрывают маслостойкой краской.
Сборку производят в соответствии с чертежом общего вида редуктора,
начиная с узлов валов:
на ведущий вал насаживают мазеудерживающие кольца и шарикоподшипники,
предварительно нагретые в масле до 80-100( С;
в ведомый вал закладывают шпонку 18(11(50 и напрессовывают зубчатое
колесо до упора в бурт вала; затем надевают распорную втулку,
мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно
нагретые в масле.
Собранные валы укладывают в основание корпуса редуктора и надевают крышку
корпуса, покрывая предварительно поверхности стыка корпуса и крышки
спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью
двух конических штифтов; затягивают болты, крепящие крышку к корпусу.
После этого на ведомый вал надевают распорное кольцо, в подшипниковые
камеры закладывают пластичную смазку, ставят крышки подшипников с
комплектом металлических прокладок; регулируют тепловой зазор, подсчитанный
по формуле (7.1)[1]. Перед постановкой сквозных крышек в проточки
закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют
проворачиванием валов отсутствие заклинивания подшипников (валы должны
проворачиваться от руки) и закрепляют крышки винтами.
Далее на конец ведомого вала в шпоночную канавку закладывают шпонку,
устанавливают звездочку и закрепляют ее торцовым креплением; винт торцового
крепления стопорят специальной планкой.
Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый
маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие
крышкой с прокладкой; закрепляют крышку болтами.
Собранный редуктор обкатывают и подвергают испытанию на стенде по
программе, устанавливаемой техническими условиями.
Список используемой литературы
1.Курсовое проектирование деталей машин: Учебно-справочное пособие для
ВУЗов / С.А.Чернавский и др.-М.: Машиностроение, 1984.
2 Шейнблид А.Е. Курсовое проектирование деталей машин: Учебное пособие для
техникумов.-М.: Высшая школа, 1991.
[pic]
Батманов А.В. гр. Т-32
[pic]
Незаконное копирование тиражирование преследуется по закону All right
received
[pic]
-----------------------
[pic]
[pic]
[pic]
[pic]
[pic] |